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Abstract—Reinforcement learning based control algorithms 

require large amount of training. During training the agent 

explore many possible safe and unsafe states. In the simulation 

environment exploration of unsafe states can be affordable. 

But many times, training in simulation world is not a feasible 

option because of issues of modeling of real-world scenarios. In 

such scenarios direct real-world training seems to be feasible 

solution. In such real-world training exploration of unsafe state 

is very dangerous for the agent as well as for the environment. 

In this work, safe learning is carried out for multi agent deep 

deterministic policy gradient (MADDPG) algorithm with the 

help of control barrier functions (CBF). This MADDPG 

augmented with CBF is applied for an application of long 

duration autonomy. Battery driven multiple ground robots are 

deployed for surveillance of a given region with fix charging 

stations. The robots are trained for surveillance considering 

safe learning i.e. robots will not drain out of battery during 

training and testing for surveillance.     

Keywords—Reinforcement Learning, multiagent deep 

deterministic policy gradient, control barrier functions, safe 
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I. INTRODUCTION 

Safe learning is a requirement for reinforcement learning 
algorithms to deploy them for real-world applications. 
Robotics applications are safety critical where agents as well 
as environment both are safety critical stakeholders, and we 
cannot afford any unsafe state during training. Control 
barrier functions (CBF) can be used to provide safety 
guarantees to remain in safe set. In the given paper I have 
used this property of CBF to make safe learning for a 
reinforcement learning algorithm: multi agent deep 
deterministic policy gradient algorithm.  

The rest of this paper is organized as follows. Control 
Barrier Function and Deep deterministic policy gradient 
(DDPG) algorithm is discussed in section II- Background. 
Section III explains problem formulation, required notations 
and equations along with already proposed approach in 
literature. Section IV explains solution of the problem with 
proposed Approach using MADDPG with Barrier 
Certification modification. Section V presents the results. 
Conclusion and future work is presented in Section VI. 

II. BACKGROUND 

A. Control Barrier Function 

Dynamics: Control-affine system    

 

where, 

 

Safe set: We consider a set C defined as the superlevel 

set of a smooth function h: Rn → R, yielding: 

 

 

 

We refer to C as the safe set. 

Control invariant set: A set is control invariant if there exists 

a control law that keeps any trajectory starting in the set 

within the set. 

Let C ⊂ R be the superlevel set of a smooth function h: R → 

R, then h is a control barrier function (CBF) if there exists 

an extended class K∞ function α such that for the control 

system: 

 

Safety-Critical Control via Quadratic Program: 

 

 

 

B. DDPG Algorithm 

Deep deterministic policy gradient (DDPG) approach is 

closely connected to Q-learning. DDPG is an off-policy 

algorithm. DDPG can only be used for environments with 

continuous action spaces. DDPG can be thought of as being 

deep Q-learning for continuous action spaces. It uses off-

policy data and the Bellman equation to learn the Q-

function. It uses the Q-function to learn the policy. 

Computing the maximum over actions is a challenge in 

continuous action spaces. DDPG deals with this by using a 

target policy network to compute an action which 

approximately maximizes Qphi_targ. 

 

Network Schematics 
DDPG uses four neural networks: a Q network, a 

deterministic policy network, a target Q network, and a target 
policy network. 

                   

The Q network and policy network is very much like 
simple Advantage Actor-Critic, but in DDPG, the Actor 
directly maps states to actions (the output of the network 
directly the output) instead of outputting the probability 
distribution across a discrete action space 



The target networks are time-delayed copies of their 
original networks that slowly track the learned networks. 
Using these target value networks greatly improve stability 
in learning. Here’s why: In methods that do not use target 
networks, the update equations of the network are 
interdependent on the values calculated by the network itself, 
which makes it prone to divergence. 

For example: 

 

So, here’s the pseudo-code of the algorithm that we want to 
implement: 

 

We are going to break this down into: 

1. Experience replay 

2. Actor & Critic network updates 

3. Target network updates 

 4. Exploration 

Replay Buffer 

As used in Deep Q learning (and many other RL 
algorithms), DDPG also uses a replay buffer to sample 
experience to update neural network parameters. During each 
trajectory roll-out, we save all the experience tuples (state, 
action, reward, next state) and store them in a finite-sized 
cache — a “replay buffer.” Then, we sample random mini 
batches of experience from the replay buffer when we update 
the value and policy networks. Why do we use experience 
replay? In optimization asks, we want the data to be 
independently distributed. This fails to be the case when we 
optimize a sequential decision process in an on-policy way, 
because the data then would not be independent of each 
other. When we store them in a replay buffer and take 
random batches for training, we overcome this issue. 

Actor (Policy) & Critic (Value) Network Updates 

 The value network is updated similarly as is done in Q-
learning. The updated Q value is obtained by the Bellman 
equation: 

            

 However, in DDPG, the next-state Q values are 
calculated with the target value network and target policy 

network. Then, we minimize the mean-squared loss between 
the updated Q value and the original Q value: 

                    

* Note that the original Q value is calculated with the 
value network, not the target value network.  

For the policy function, our objective is to maximize the 
expected return: 

                

To calculate the policy loss, we take the derivative of the 
objective function with respect to the policy parameter. Keep 
in mind that the actor (policy) function is differentiable, so 
we have to apply the chain rule. 

              

But since we are updating the policy in an off-policy way 
with batches of experience, we take the mean of the sum of 
gradients calculated from the mini-batch: 

 

Target Network Updates 

We make a copy of the target network parameters and 
have them slowly track those of the learned networks via 
“soft updates,” as illustrated below: 

                     

Exploration 

In Reinforcement learning for discrete action spaces, 
exploration is done via probabilistically selecting a random 
action (such as epsilon-greedy or Boltzmann exploration). 
For continuous action spaces, exploration is done via adding 
noise to the action itself (there is also the parameter space 
noise, but we will skip that for now). 

                       

III. PROBLEM FORMULATION 

Safe Learning for MADDPG with Control Barrier 
Certification for Long duration ground surveillance. 

Applications: Multi Agent Systems 

                          

        Figure 1: Swarm of drones for surveillance  

                          

                        Figure 2: Autonomous electric vehicles 



                

    Figure 3: Battery driven warehouse robots 

 

Proposed Environment:  Ground robots deployed for 
surveillance for long duration autonomy 

                 

              Figure 4: Long duration ground surveillance 

Constraints: 

1) Robot never gets stranded away from a charging 
station 

2)Prevent overcharging 

3)Collision avoidance 

A. Notations and Equations: 

•   The dynamics of the augmented state Xi 

 

Where: 

•  Dynamics of a robot is modelled by the following 
control affine system: 

                          

•   And, the energy dynamics are given by (the energy Ei 
stored in robot i’s battery) 

                          

•  Static mapping from robot i’s state to its position pi 
belongs to Rd, d = 2 for ground robots or d = 3 for aerial 
robots 

                        

•   Function that evaluates the energy that robot i requires 
to reach a charging station starting from position pi 

                       

B. Given Approach in literature with Barrier Certification  

Barrier Certification for Survivability constraints: 

1)  By ensuring that each robot never gets stranded away 
from a charging station: 

 

2) To prevent overcharging: 

                    

by defining the logical and of these constraints, 

                     

Barrier Certification for Environmental monitoring task: 

•   Reformulate the task itself using CBFs which can be then 
combined with the CBF for survivability in order to 
implement persistent environmental monitoring 

•   Consider N robots tasked with monitoring a compact and 
convex set omega is subset of Rd. We can define a measure 
of the coverage quality by defining a cost: 

                         

Barrier function related to the task as ht(x) =-J(x) 

Where, 

• x is the ensemble state of the robots,  is the 
Voronoi tessellation of the set. 

• The value   R;  , encodes the 
importance of the point q. 

• Where the quality of the sensor coverage associated with 
the point q decreases quadratically with the distance 

. 

Note: The further away the point to monitor is, the worse the 
coverage is, and the higher is the coverage cost J. 

Barrier Certification for Collision avoidance: 

        

Combining the Barrier certificates for Collision 
avoidance and Survivability constraints: 

   

Each robot executes the input ui solution of the 

following QP: 

    

IV. PROPOSED APPROACH USING MADDPG WITH BARRIER 

CERTIFICATION 

Safety using Barrier Certification:  

 



Surveillance using MADDPG: 

             

A safe control input ui safe can be determined by solving 
the following Quadratic program 

   

MADDPG with Control Barrier Certification 
Algorithm 

 

 

V. RESULTS 

 

Figure 5. Training 

Number of episodes: 10,000. Time steps per 

episode (episode length): 100. Save rate: after every 100 

episodes 

 

 
Figure 5. Agents doing surveillance 

 

 
Figure 6. Agents getting charged 

 

 
Figure 7. Agents doing surveillance 
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