

Safe Learning for MADDPG with Control Barrier

Certification for Long duration ground surveillance
Lokesh Bansal

Robert Bosch Center for Cyber

Physical Systems

Indian Insttute of Science

Bangalore, India

lokeshbansal@iisc.ac.in

Abstract—Reinforcement learning based control algorithms

require large amount of training. During training the agent

explore many possible safe and unsafe states. In the simulation

environment exploration of unsafe states can be affordable.

But many times, training in simulation world is not a feasible

option because of issues of modeling of real-world scenarios. In

such scenarios direct real-world training seems to be feasible

solution. In such real-world training exploration of unsafe state

is very dangerous for the agent as well as for the environment.

In this work, safe learning is carried out for multi agent deep

deterministic policy gradient (MADDPG) algorithm with the

help of control barrier functions (CBF). This MADDPG

augmented with CBF is applied for an application of long

duration autonomy. Battery driven multiple ground robots are

deployed for surveillance of a given region with fix charging

stations. The robots are trained for surveillance considering

safe learning i.e. robots will not drain out of battery during

training and testing for surveillance.

Keywords—Reinforcement Learning, multiagent deep

deterministic policy gradient, control barrier functions, safe

learning, long duration autonomy

I. INTRODUCTION

Safe learning is a requirement for reinforcement learning
algorithms to deploy them for real-world applications.
Robotics applications are safety critical where agents as well
as environment both are safety critical stakeholders, and we
cannot afford any unsafe state during training. Control
barrier functions (CBF) can be used to provide safety
guarantees to remain in safe set. In the given paper I have
used this property of CBF to make safe learning for a
reinforcement learning algorithm: multi agent deep
deterministic policy gradient algorithm.

The rest of this paper is organized as follows. Control
Barrier Function and Deep deterministic policy gradient
(DDPG) algorithm is discussed in section II- Background.
Section III explains problem formulation, required notations
and equations along with already proposed approach in
literature. Section IV explains solution of the problem with
proposed Approach using MADDPG with Barrier
Certification modification. Section V presents the results.
Conclusion and future work is presented in Section VI.

II. BACKGROUND

A. Control Barrier Function

Dynamics: Control-affine system

where,

Safe set: We consider a set C defined as the superlevel

set of a smooth function h: Rn → R, yielding:

We refer to C as the safe set.

Control invariant set: A set is control invariant if there exists

a control law that keeps any trajectory starting in the set

within the set.

Let C ⊂ R be the superlevel set of a smooth function h: R →

R, then h is a control barrier function (CBF) if there exists

an extended class K∞ function α such that for the control

system:

Safety-Critical Control via Quadratic Program:

B. DDPG Algorithm

Deep deterministic policy gradient (DDPG) approach is

closely connected to Q-learning. DDPG is an off-policy

algorithm. DDPG can only be used for environments with

continuous action spaces. DDPG can be thought of as being

deep Q-learning for continuous action spaces. It uses off-

policy data and the Bellman equation to learn the Q-

function. It uses the Q-function to learn the policy.

Computing the maximum over actions is a challenge in

continuous action spaces. DDPG deals with this by using a

target policy network to compute an action which

approximately maximizes Qphi_targ.

Network Schematics
DDPG uses four neural networks: a Q network, a

deterministic policy network, a target Q network, and a target
policy network.

The Q network and policy network is very much like
simple Advantage Actor-Critic, but in DDPG, the Actor
directly maps states to actions (the output of the network
directly the output) instead of outputting the probability
distribution across a discrete action space

The target networks are time-delayed copies of their
original networks that slowly track the learned networks.
Using these target value networks greatly improve stability
in learning. Here’s why: In methods that do not use target
networks, the update equations of the network are
interdependent on the values calculated by the network itself,
which makes it prone to divergence.

For example:

So, here’s the pseudo-code of the algorithm that we want to
implement:

We are going to break this down into:

1. Experience replay

2. Actor & Critic network updates

3. Target network updates

 4. Exploration

Replay Buffer

As used in Deep Q learning (and many other RL
algorithms), DDPG also uses a replay buffer to sample
experience to update neural network parameters. During each
trajectory roll-out, we save all the experience tuples (state,
action, reward, next state) and store them in a finite-sized
cache — a “replay buffer.” Then, we sample random mini
batches of experience from the replay buffer when we update
the value and policy networks. Why do we use experience
replay? In optimization asks, we want the data to be
independently distributed. This fails to be the case when we
optimize a sequential decision process in an on-policy way,
because the data then would not be independent of each
other. When we store them in a replay buffer and take
random batches for training, we overcome this issue.

Actor (Policy) & Critic (Value) Network Updates

 The value network is updated similarly as is done in Q-
learning. The updated Q value is obtained by the Bellman
equation:

 However, in DDPG, the next-state Q values are
calculated with the target value network and target policy

network. Then, we minimize the mean-squared loss between
the updated Q value and the original Q value:

* Note that the original Q value is calculated with the
value network, not the target value network.

For the policy function, our objective is to maximize the
expected return:

To calculate the policy loss, we take the derivative of the
objective function with respect to the policy parameter. Keep
in mind that the actor (policy) function is differentiable, so
we have to apply the chain rule.

But since we are updating the policy in an off-policy way
with batches of experience, we take the mean of the sum of
gradients calculated from the mini-batch:

Target Network Updates

We make a copy of the target network parameters and
have them slowly track those of the learned networks via
“soft updates,” as illustrated below:

Exploration

In Reinforcement learning for discrete action spaces,
exploration is done via probabilistically selecting a random
action (such as epsilon-greedy or Boltzmann exploration).
For continuous action spaces, exploration is done via adding
noise to the action itself (there is also the parameter space
noise, but we will skip that for now).

III. PROBLEM FORMULATION

Safe Learning for MADDPG with Control Barrier
Certification for Long duration ground surveillance.

Applications: Multi Agent Systems

 Figure 1: Swarm of drones for surveillance

 Figure 2: Autonomous electric vehicles

 Figure 3: Battery driven warehouse robots

Proposed Environment: Ground robots deployed for
surveillance for long duration autonomy

 Figure 4: Long duration ground surveillance

Constraints:

1) Robot never gets stranded away from a charging
station

2)Prevent overcharging

3)Collision avoidance

A. Notations and Equations:

• The dynamics of the augmented state Xi

Where:

• Dynamics of a robot is modelled by the following
control affine system:

• And, the energy dynamics are given by (the energy Ei
stored in robot i’s battery)

• Static mapping from robot i’s state to its position pi
belongs to Rd, d = 2 for ground robots or d = 3 for aerial
robots

• Function that evaluates the energy that robot i requires
to reach a charging station starting from position pi

B. Given Approach in literature with Barrier Certification

Barrier Certification for Survivability constraints:

1) By ensuring that each robot never gets stranded away
from a charging station:

2) To prevent overcharging:

by defining the logical and of these constraints,

Barrier Certification for Environmental monitoring task:

• Reformulate the task itself using CBFs which can be then
combined with the CBF for survivability in order to
implement persistent environmental monitoring

• Consider N robots tasked with monitoring a compact and
convex set omega is subset of Rd. We can define a measure
of the coverage quality by defining a cost:

Barrier function related to the task as ht(x) =-J(x)

Where,

• x is the ensemble state of the robots, is the
Voronoi tessellation of the set.

• The value R; , encodes the
importance of the point q.

• Where the quality of the sensor coverage associated with
the point q decreases quadratically with the distance

.

Note: The further away the point to monitor is, the worse the
coverage is, and the higher is the coverage cost J.

Barrier Certification for Collision avoidance:

Combining the Barrier certificates for Collision
avoidance and Survivability constraints:

Each robot executes the input ui solution of the

following QP:

IV. PROPOSED APPROACH USING MADDPG WITH BARRIER

CERTIFICATION

Safety using Barrier Certification:

Surveillance using MADDPG:

A safe control input ui safe can be determined by solving
the following Quadratic program

MADDPG with Control Barrier Certification
Algorithm

V. RESULTS

Figure 5. Training

Number of episodes: 10,000. Time steps per

episode (episode length): 100. Save rate: after every 100

episodes

Figure 5. Agents doing surveillance

Figure 6. Agents getting charged

Figure 7. Agents doing surveillance

REFERENCES

[1] Aaron D. Ames, Samuel Coogan, Magnus Egerstedt, Gennaro
Notomista, Koushil Sreenath, and Paulo Tabuada, “Control Barrier
Functions: Theory and Applications”.

[2] Magnus Egerstedt, Jonathan N. Pauli, Gennaro Notomista, Seth
Hutchinson, “Robot ecology: Constraint-based control design for long
duration autonomy”.

[3] Timothy P. Lillicrap, Jonathan J. Hunt, Alexander Pritzel, Nicolas
Heess, Tom Erez, Yuval Tassa, David Silver & Daan Wierstra,
“Continuous control with deep reinforcement learning”.

[4] Gal Dalal, Krishnamurthy Dvijotham, Matej Vecerik, Todd Hester,
Cosmin Paduraru, Yuval Tassa, “Safe Exploration in Continuous
Action Spaces”.

[5] Ryan Lowe, Yi Wu, Aviv Tamar, Jean Harb, Pieter Abbeel, Igor
Mordatch, “Multi-Agent Actor-Critic for Mixed Cooperative-
Competitive Environments”.

